There is no consistent nomenclature to represent different degrees of intellectual ability. For decades, IQ and achievement test manuals have used the term “superior” to designate children from 120 to 129 IQ and “very superior” for children at or above 130 IQ (2 s.d. above the norm). Negative connotations of these terms, and the logical conclusion that children at the opposite end of the spectrum are “inferior” (Dai, 2009), has not led as yet to new terminology. However, in 1999, in his role as Project Director for the fifth edition of the Stanford-Binet Intelligence Scale (SB5), John Wasserman requested that an international committee of over 20 diagnosticians and experts in the field of gifted education collectively determine nomenclature for the different levels of giftedness. After a full year of deliberations, the following descriptors were established (Wasserman, 2003, 2007). The table below describes the psychometric designations at different levels of giftedness, the IQ or Composite score range, and the standard deviation from the norm. It would be helpful if these designations were codified in new IQ test manuals.

Levels of Intellectual Giftedness

<table>
<thead>
<tr>
<th>Descriptive Term</th>
<th>Composite Score Range</th>
<th>Normal Curve Scoring Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profoundly Gifted</td>
<td>175+</td>
<td>+5 SD and above</td>
</tr>
<tr>
<td>Exceptionally Gifted</td>
<td>160 – 174</td>
<td>+4 – 4.99 SD</td>
</tr>
<tr>
<td>Highly Gifted</td>
<td>145 – 159</td>
<td>+3 – 3.99 SD</td>
</tr>
<tr>
<td>Gifted</td>
<td>130 – 144</td>
<td>+2 – 2.99 SD</td>
</tr>
<tr>
<td>Advanced (Superior)</td>
<td>120 – 129</td>
<td>+1.33 – 1.99 SD</td>
</tr>
<tr>
<td>High Average</td>
<td>110 – 119</td>
<td>+0.067 – 1.32 SD</td>
</tr>
<tr>
<td>Average</td>
<td>90 – 109</td>
<td>-0.67 - +.66 SD</td>
</tr>
</tbody>
</table>

Note: SD means standard deviation(s). The descriptive terms and corresponding ranges vary among systems and tests. These are intended for a test with a normative mean of 100 and standard deviation of 15.

(Wasserman, 2007, p. 60, used with permission)

Inconsistent terminology is a serious issue. At this juncture, the term “profoundly gifted” can refer to children of at least 180 IQ, or 175 IQ, or 160 IQ, or 145 IQ. The thought processes of children in the exceptionally and profoundly gifted ranges are very different from children in the moderately gifted range (Gross, 2009; Lovecky, 1994).

A striking characteristic of exceptionally and profoundly gifted children is their capacity for “dual processing”—the seeming ability to process two sets of information simultaneously and in parallel. … Both the prevalence and quality of this are significantly more marked in…children of IQ 175 or above. (Gross, 2009, p. 339)

I tested a 9 year old boy who attained an IQ score of 237+. He had an extraordinary mathematical mind. Upon meeting me, he inquired how old I was and the highest IQ score ever attained. When he was in Kindergarten, his mother would reward him for getting along with the other children by reading him a chapter in a college physics book.
He was asked how he solves math problems, and replied that he can do two mathematical operations at the same time, and on a good day, he can do three. His mind was quite different from that of a child with a 145 IQ.

In research conducted with gifted populations, the sample is most often defined as those who have been placed in a gifted program. Criteria for selection to gifted programs can range from 115 IQ to 140 IQ or bypass intelligence scales altogether, with achievement tests, portfolios, checklists, grades or recommendations. The gifted population in one study bears little resemblance to the gifted population in another study, which leads to conflicting results and confusing interpretations.

The challenge with having multiple definitions, ways to interpret those definitions, and methods to identify gifted children who meet criteria outlined in those definitions, is that it results in tremendous heterogeneity among the gifted populations under study. As such, results of research...are less generalizable, and replication of findings becomes more challenging. (Martin, Burns, & Schonlau, 2010, p. 33)

Until recently, there has not been a perceived need for terms that distinguish highly from exceptionally from profoundly gifted. For the last 50 years, the highest IQ scores generated by modern tests made it virtually impossible to differentiate levels of giftedness beyond the highly gifted range. As a result, most exceptionally and profoundly gifted children were never identified.

Wasserman set the stage for the testing industry to develop methods of identifying individuals at the higher regions of giftedness. In addition to creating a forum to establish consistent terminology to represent extreme levels, Wasserman assembled a group of examiners of exceptionally gifted children and asked what they needed in an IQ test, he arranged for extensive validation studies to be conducted on the SB5 with exceptionally and profoundly gifted children, and, in July of 2000, he organized a “Gifted Summit” with test constructors and key members of the gifted assessment community to discuss the necessity of raising ceilings on IQ tests (Silverman, 2007). As a result, Richard Woodcock extended Woodcock-Johnson test score ranges over 200, and extended norms were devised for the SB5, raising the ceiling as high as 225 (Roid, 2003).

In 2007, data from a nationwide study of 334 gifted children sponsored by the National Association for Gifted Children were submitted to Pearson Assessments. J. J. Zhu used this data base to create extended norms for the fourth edition of the Wechsler Intelligence Scale for Children (WISC-IV) (Zhu, Cayton, Weiss & Gabel, 2008). The maximum subtest scaled score was raised from 19 to 28. The maximum Index (composite) and Full Scale scores were raised from 160 to 210. The new norms were posted February 7, 2008 on the Pearson website in WISC-IV Technical Report #7:

Currently, Pearson is conducting a validation study with highly gifted children to extend the norms on the fourth edition of the *Wechsler Preschool and Primary Scale of Intelligence* (WPPSI-IV). These new developments have created a need for consistent descriptive labels for higher ranges of intelligence.

There are vast differences in developmental needs at the lower and higher realms of giftedness. “Some of the behavioral characteristics of the highly gifted resemble those found in children with learning disabilities” (S. Shaywitz, Holahan, Freudenheim, Fletcher, Makuch, & B. Shaywitz, 2001, p. 21). Exceptionally gifted children are among the highest risk gifted populations (Gross, 2009; Hafenstein & Honeck, 2011; Rimm, Gilman & Silverman, 2008). When not recognized, these children are in danger of depression, loneliness, misdiagnosis with AD/HD, and even suicidal ideation (Silverman, Cayton & Raiford, 2008). They are often seen as inattentive and unmotivated. Continuously given schoolwork they have already mastered, they frequently are driven into patterns of underachievement.

Gifted educators have been so focused on the development of talented children (approximately 120 IQ and above), that they have not taken seriously the needs of children in the higher extremes of ability. These children are beyond the radar of teacher training programs in the field and outside the range of typical provisions for the gifted. Many parents of exceptionally and profoundly gifted children have found schools to be so unresponsive to their children that they have had no choice but to homeschool them (Goodwin & Gustavson, 2011; Lovecky, 2011). There are numerous cases of profoundly gifted children who refuse to go to school. One six year old told her parents, “I’m not going back there. They aren’t teaching me anything new.” Gross (2009) describes “Australia’s youngest school dropout at age 5 years after 2 weeks of stultifying boredom being ‘introduced’ with the other 5-year-olds to ‘reading readiness’ although he had been reading since age 2” (p. 348).

Parents of exceptionally gifted children often select homeschooling from the beginning as the best educational option as it enables their children to progress at their own rate. One consequence of the burgeoning homeschooling movement (Kearney, 2011) for exceptionally gifted children is that it has rendered these children invisible to public school educators. Few educators are aware that they exist, the incidence of them in the population, or their educational needs. On the grounds that there are “so few of them,” they have been considered of little consequence.

There are far more exceptionally gifted children in the population than anyone realizes. Several investigators have discovered bewilderingly frequent scores at the upper end of the IQ distribution (e.g., J. Gallagher & Moss, 1963; Silverman & Kearney, 1989; McGuffog, Feiring, & Lewis, 1987; H. Robinson, 1981; N. Robinson, Zigler & J. Gallagher, 2000; Terman, 1925). Jensen (1980) reported, “there is an excess of high IQs about 150. . . . It is generally not statistically detectable in samples numbering fewer than two or three thousand” (p. 84). Terman (1925) disclosed:
The group contains an unexpectedly large proportion of cases in the upper IQ ranges. … there is an appreciable excess of 150 IQ cases, or better, and over and above the theoretical expectation. Above 160 the number of cases found increases out of all proportion to the theoretically expected number and by IQ 170 exceeds it several times. (p. 633)

Over a 33-year period, the Gifted Development Center has identified approximately 1,000 children with IQ scores at or above 160. This represents 18% of the children referred for assessment. And 97 of these children scored above 200 IQ. In a study of 47 children assessed at Children of High Potential (CHIP) in Australia, 38% were above 160 (Alsop, 1997). Support groups for “PG” (profoundly gifted) children and their families were formed in the 1980s in Maine and Colorado. In 1989, 15 of the families in Maine and 23 of the families in Colorado were compared on a number of variables (Silverman & Kearney, 1989). Data on the first 241 exceptionally gifted children (160+ IQ) brought to GDC for assessment were analyzed and presented in 1997 (K. Rogers & Silverman, 1997) and compared with studies of moderately gifted children (K. Rogers & Silverman, 2001). More extensive studies of this population will be forthcoming. Extended norms on intelligence scales are likely to increase the visibility of, and research on, this neglected population. Hopefully, it will rekindle psychology’s interest in the development of these outliers.

Characteristics of giftedness

Working effectively with gifted populations of any age requires knowledge of the traits associated with giftedness. The *Characteristics of Giftedness Scale* was originally developed in 1973 (Silverman, 1978) and consisted of 16 items. Since 1979, it has served as a screening tool in clinical practice to ascertain the likelihood of a child testing in the gifted range on an individual, standardized intelligence scale. For 20 years, it was administered to parents in a phone interview, and parents were asked to provide examples of each characteristic. The instrument is now a 4-point Likert scale, ranging from *Not True* to *Very True* that is sent to parents electronically. It has been expanded to 25 traits reported consistently in the literature and found to be predictive of gifted IQ scores throughout 33 years of clinical practice (N > 6,000). The instrument has been used in several clinical and school settings worldwide; there is also a teacher version. It has proven useful for children between the ages of 3 and 18. The descriptors were selected to meet the following criteria:

1. representative of the majority of gifted children assessed
2. applicable to a wide age range
3. generalizable to children of varied socioeconomic, ethnic and cultural backgrounds
4. gender fair
5. easily observed in the home environment
6. brief and clearly worded for ease of interpretation by parents
7. valid at the lowest and highest levels of giftedness
8. able to discriminate between gifted and average children
9. supported by clinical and empirical research

Several studies of the instrument were conducted with gifted samples (e.g., M. Rogers & Silverman, 1988; Silverman, Chitwood & Waters, 1986; K. Rogers & Silverman, 2001). In the largest study (N>1,000), 84% of the children whose parents endorsed 75% of the characteristics achieved IQ scores in the superior and gifted ranges (>120 IQ) (Silverman, 1978, 2003). Parents of 241 exceptionally gifted children (>160 IQ) endorsed at least 80% of the characteristics (K. Rogers & Silverman, 2001). The 17 italicized items in the scale below clearly differentiated (<.01) between 38 gifted and 42 average third and fourth graders (M. Rogers, 1986).

Characteristics of Giftedness Scale

Compared to other children your child’s age, to what extent do these descriptors fit your child?

- Reasons well (good thinker)
- Learns rapidly
- Has extensive vocabulary
- Has an excellent memory
- Has a long attention span (if interested)
- Sensitive (feelings hurt easily)
- Shows compassion
- Perfectionistic
- Intense
- Morally sensitive
- Has strong curiosity
- Perseverant in areas of interest
- Has high degree of energy
- Prefers older companions or adults
- Has a wide range of interests
- Has a great sense of humor
- Early or avid reader (if too young to read, loves being read to)
- Concerned with justice, fairness
- Judgment mature for age at times
- Is a keen observer
- Has a vivid imagination
- Is highly creative
- Tends to question authority
- Has facility with numbers
- Good at jigsaw puzzles

Some of these items are stronger indicators of giftedness than others. Extensive vocabulary, excellent memory, speed of learning, interest in books, asks probing questions, and math understanding were all highly significant (<.001) discriminators of gifted versus average children (M. Rogers, 1986). Compared to samples of moderately
gifted children, exceptionally gifted children (>160 IQ) preferred older friends, were more emotionally sensitive, were more frequently reported to have excellent memory, were more intensely interested in reading and explored a wide variety of interests (K. Rogers & Silverman, 2001).

Early indicators of advanced development

How early can developmental delay be detected? Within the first months of life. How early can giftedness be detected? Earlier than we would suspect. Many educators staunchly believe that gifted children cannot be identified with any accuracy until around 3rd grade. But psychological investigation of infant development tells an entirely different story. These indicators of advanced development in infants are well documented by decades of research:

- High newborn cry count (N. Robinson, 1993)
- Alertness (Gogel, McCumsy & Hewett, 1985; Louis, 1993; M. Rogers, 1986)
- Rapid habituation to visual stimuli (M. Lewis & Louis, 1991; N. Robinson & H. Robinson, 1992)
- Preference and longer attention span for novel stimuli (Fisher, 1990; M. Rogers, 1986; Storfer, 1990; Tannenbaum, 1992)
- Faster progression from reflexive to intentional behavior (Berche Cruz, 1987)
- Curiosity (M. Lewis & Louis, 1991)
- Unusual memory (Parkinson, 1990; M. Rogers, 1986; Tannenbaum, 1992)
- Awareness and interest in the world (Louis, 1993; Maxwell, 1995)
- Early receptive language skills (Gottfried, Gottfried, & Guerin, 2006)
- Early attempts to communicate (utter sounds, first words and speech) (Louis, 1993)
- Early smiling (Henderson & Ebner, 1997)
- Responsiveness (Gogel, McCumsy & Hewett, 1985)
- Intensity (Maxwell, 1995)
- Reduced need for sleep (Gaunt, 1989; Henderson & Ebner, 1997)
- Intense reactions to frustration (M. Rogers, 1986)
- Rapid learning rate (Louis & M. Lewis, 1992; M. Rogers, 1986; Tannenbaum, 1992)
- Advanced progression through the developmental milestones (Alomar, 2003; Henderson & Ebner, 1997)

She was alert at birth, and smiled within 24 hours thereafter.

B has always been developmentally ahead since she was newborn. On the warming table she would turn and focus at our voices calling her name when she was only 15 minutes old. We started to read to her right away when she was 2 days old and she would focus at the books and be very content for long periods of time that increased as she got older.
She held her head up at 2 days. She made direct and purposeful eye contact before she was a month old. She disassembled the humidifier in her room, lined parts up in the order in which they came out at 10 months.

Michael Lewis and Barbara Louis (1991) conducted numerous studies of gifted and average preschoolers, investigated parental perceptions of their gifted children’s early development, and reviewed existing studies of gifted young children. They concluded that the primary signs of giftedness noted by both researchers and parents of gifted children were “early verbal ability, strong memory skills, and abstract reasoning” (p. 377). One surprising observation was that an infant’s pleasure in learning was highly predictive of later cognitive scores. Advanced language development was the strongest determinant in the identification of young gifted children. Ranking in 1st place, over 60% of 276 parents queried endorsed expressive and productive language as the most prominent signifier of their child’s giftedness. Nancy Robinson (1993) concurs that precocious verbal abilities are more likely to be recognized in young children than unusual visual-spatial abilities.

During the early years (perhaps throughout childhood), parents tend to do best at identifying precocious children in domains in which there are distinctive milestones and normative expectations, as there are for the emergence of language and reading. Parents are, for example, quite good at identifying toddlers with broad vocabularies and complex sentence structure and better at identifying preschoolers who reason well mathematically and read early than those who exhibit precocious spatial reasoning and memory, areas in which adults typically do not possess such informal timetables. (N. Robinson, 1993, p. 510)

Martin Rogers (1986) asked parents of 39 gifted and 38 average children to describe their children’s development during the first 36 months. Nearly two-thirds of each group had kept baby books as records. The groups were matched by socio-economic level and geographic location. Differences between the achievement scores of gifted and average children were highly significant (p >.001). As with other modern studies (see N. Robinson, 1993), no differences were found between the two groups in physical development. Activity level of the samples was nearly identical. One of the earliest signs of giftedness differentiating the groups was alertness (p <.006). One parent said that when her child was seven months old “he was watching Sesame Street so intently that when he finally fell asleep he was still watching and just fell over backwards” (M. Rogers & Silverman, 1988, p. 5).

As a newborn, he didn’t want to sleep, and he could hold his head up early. But it was his eyes: you could just see him looking and drinking it all in. Strangers would comment on how preternaturally alert he was. He inhaled books, both read to him and paging through them on his own. On his third birthday he got one of those large floor puzzles. Straight out of the box he had it assembled inside of 15 minutes—with the image facing the floor. He was a Lego maniac from the moment he could handle a
The faster rate. Similar results. Alomar (2003) reported that some parents in Kuwait became aware that Hewett, 1985; Kaufmann & Sexton, 1983). Studies in other countries have produced age. Nearly half the sample observed developmental differences before the age of 2. Most parents saw clear signs of giftedness well before school age (Gogel, McCumsey & Hewett, 1985) polled 1,039 parents to determine how early they suspected that their children were gifted. Seven percent noted differences in their children’s alertness and responsiveness within the first six months. Fifteen percent recognized the signs of giftedness when their children were between 6 and 12 months of age. Nearly half the sample observed developmental differences before the age of 2. Most parents saw clear signs of giftedness well before school age (Gogel, McCumsey & Hewett, 1985; Kaufmann & Sexton, 1983). Studies in other countries have produced similar results. Alomar (2003) reported that some parents in Kuwait became aware that their infants (3 to 12 months) were progressing through the developmental milestones at a faster rate.

Some additional signs of giftedness in preschoolers, beyond the general traits in the Characteristics of Gifted Scale and the indicators of giftedness in infants include:

- Early and extensive language development
- Enjoyment and speed of problem-solving
- Early use of symbol systems and capacity for symbolic thought
- More complex play patterns
- Personal maturity
- Heightened concentration
- Intuitive insights
- Early interest in time (e.g., clocks, calendars)
- Recognition of letters before age 2
- Ability to count to ten by age 3
- Ability to put together a 20-piece puzzle by age 3
- Ability to sight read an easy reader by age 4

A mother of a profoundly gifted child reported how astonished she was to discover that her daughter could read at the age of three.

"She was reading a package label and asked me, ‘Mom, what does ‘Not recommended for children under the age of three mean?’ We’ve been
struggling to keep up with her ever since. She has always asked unusual questions—she once wanted to know why time doesn’t run backwards.

Considerable research has been conducted with gifted and nongifted preschoolers (e.g., Gottfried, Gottfried & Guerin, 2006; Louis & M. Lewis, 1992; N. Robinson, 2008b; White, 1985). Louis and M. Lewis (1992) studied 118 preschoolers in two ranges of intelligence. The mean IQ score of the gifted group was 149 and the mean for the average group was 118. Parents of the gifted group described their children’s abstract reasoning, memory and creative imagination significantly more often (p<.05) than parents of average children, whereas parents of average children were much more likely to describe their child’s abilities in terms of factual knowledge (body parts, alphabet, numbers, special knowledge). White (1985) provided an interesting list of characteristics from the Harvard Preschool Project that differentiated the gifted group from those who were less advanced:

- advanced capacity for language;
- an unusual ability to detect discrepancies and errors in logic;
- the ability to anticipate future events;
- advanced abstract reasoning abilities;
- ability to take the perspective of others;
- original associations;
- planning and executing complex activities;
- effective use of resources;
- exceptional concentration;
- the ability to process large amounts of information.

Knowledge of the research on young children should dispel the myths that giftedness cannot be identified in young children. It also challenges the perception that parents are poor informants about the early development of their gifted children. Now that we know gifted children can be recognized in early childhood, should we do so?

The importance of early detection

At what age should exceptional children be identified? When we look at every other exceptionality, the answer is quite clear. The earlier the better. Early identification permits early intervention. Early intervention is necessary for optimal development. This is common knowledge throughout the world. What is not common knowledge—even in the field of gifted education—is that the same principle applies to giftedness (Witty, 1958). Hollingworth (1942) reported that the earlier highly gifted children were identified, the more favorable their development.

Those who passionately believe that giftedness is the result of environmental opportunity should be equally passionate about locating children of promise in the early years. Giftedness can be found in young children, and, without appropriate stimulation, it can also be lost (J. Gallagher, 1979; Henderson & Ebner, 1997; Louis & M. Lewis, 1991). From their research, Barbara Louis and Michael Lewis (1991) contend that
stability of IQ scores in the gifted is maintained only in appropriately nourishing environments. Children of poverty are offered less stimulation than those from affluent families. “If the environment were to remain optimal during the preschool period and beyond, gifted status would remain stable. This is the most influential argument for early enrichment programs for young gifted children” (p. 377).

Much has been written about the neural plasticity of the brain: the capacity of the brain to change structurally and functionally through environmental stimulation. Kalbfleisch (2009) perceives giftedness as “a type of neural plasticity that we do not yet fully understand” (p. 276). “Environmental and sensory stimulation from birth onward lays the wiring and develops the mechanisms for a child’s ability to learn information and develop skills throughout life” (Henderson & Ebner, 1997, p. 63). Development is a continuous, dynamic interaction of heredity and environment. In their article, “The Biological Basis for Early Intervention with Gifted Children,” Henderson and Ebner (1997) offer a strong rationale for stimulating early childhood programs for the gifted.

The developing brain [is] extremely sensitive to its environment. … The period from 1 to 3 years of age is especially critical for typically developing children, as well as those with developmental delay. We suggest that the critical time frame for gifted children may begin even earlier, and if this is the case, adjustments may be needed to accommodate the precocious developmental time line many gifted children follow. (p. 59).

The most effective way to increase equitable distributions of culturally diverse gifted children, multilingual gifted children, rural gifted children and economically disadvantaged gifted children is to find them as early as possible and enhance their abilities before they fade. Every year the environment exerts a heavier hand on the life of a child. Children are much less likely to underachieve if they are placed, from preschool on, in environments that relish their aptitudes. The research has clearly demonstrated that early enrichment enables low income gifted children from diverse backgrounds to maintain their high abilities. (See Feiring, Louis, Ukeje & Lewis, 1997 for a review.)

Early identification and intervention are particularly important for twice exceptional children. The greater one’s abstract reasoning abilities, the easier it is for the brain to design strategies that camouflage the problem. For example, gifted children with serious hearing impairments have been known to read lips so well that the hearing loss was not discovered for many years. Many children with visual weaknesses use verbal reasoning to talk their way through visual tasks. Such compensation strategies cover up the difficulties temporarily, but they do not resolve the issues. At a later point in development, early strategies often fail.

Gifted children often are allergy-prone, may be colicky babies, and may sustain repeated infections, particularly if they are in day care. Toddlers who have experienced chronic ear infections (more than 9 in the first three years) are at risk for central auditory processing disorder (CAPD) and attentional issues (Feagans, 1986). Early detection and treatment of ear infections can reverse or prevent conductive hearing losses. Infant screening for hearing impairments and amplification of sound (hearing aids) can also prevent cognitive delays (Yoshinaga-Itano, Sedey, Coulter, & Mehl, 1998).

Fine motor weaknesses are common in gifted boys (Terrassier, 1985). They may appear as clumsiness, lack of coordination, poor balance, delayed choice of handedness,
poor pencil grip, slow handwriting speed, inability to cross the midline of the body without switching hands, difficulty cutting or drawing simple figures, and avoidance of motor tasks. Parents are often told that their children are so smart that they will “outgrow” these problems. When any of these difficulties are observed, it is important for the child to be evaluated by a pediatric occupational therapist as early as possible. A program of exercises before the child is seven is likely to prevent problems with handwriting and underachievement down the road (Silverman, 2009c).

Preschool and primary years are the most critical in the development of a child’s self-concept. There is that moment of truth when the young gifted child discovers that he or she is different from other children.

One mother reported that her 4-year-old son wrote a note to hang on the front door, telling his friends that he did not want to play. He then crumpled the note, and sadly explained to his mother, “I can’t hang this note up, Mom. They can’t read!” (Roedell, 1988, p. 7)

It is important for young gifted children to have the opportunity to find true peers—children with similar abilities and interests. Asynchronous gifted children whose intellectual development far exceeds their physical development may have different sets of friends for different types of activities: “one set of peers for reading and discussing books, and another set for riding tricycles and playing ball” (Roedell, 1988, p. 7). The ability to adapt to less advanced age mates is useful, but it is insufficient to be emotionally fulfilling. Without true peers, young gifted children may hide their abilities or withdraw or be seen as strange.

One 4-year-old boy was diagnosed as emotionally disturbed by his preschool teachers because of his tendency to withdraw from social interaction. His worried parents enrolled him in a program for highly gifted children, where his friendly, outgoing manner demonstrated that his withdrawn behavior had been the result of having no intellectual peers with whom to interact. Without someone he could talk to, he stopped talking.

When a gifted child finds a real friend, the child’s personality will blossom. Ronald, a gifted 5 year old, explained it well when he commented, “Do you know why Bill is my best friend? Because he’s the only one who understands the kind of guy I really am.” (Roedell, 1988, p. 7)

Some think about gifted children as a nation’s most precious resource and recommend that society provide early environmental stimulation to conserve this national treasure. But the most compelling reason for early intervention is to protect the children themselves. “Children who are out of step with their peers may be denied a happy, healthy childhood.” (N. Robinson, 1993, p. 508).